A Structurally Simplified Hybrid Model of Genetic Algorithm and Support Vector Machine for Prediction of Chlorophyll a
نویسندگان
چکیده
With decreasing water availability as a result of climate change and human activities, analysis of the influential factors and variation trends of chlorophyll a has become important to prevent reservoir eutrophication and ensure water supply safety. In this paper, a structurally simplified hybrid model of the genetic algorithm (GA) and the support vector machine (SVM) was developed for the prediction of monthly concentration of chlorophyll a in the Miyun Reservoir of northern China over the period from 2000 to 2010. Based on the influence factor analysis, the four most relevant influence factors of chlorophyll a (i.e., total phosphorus, total nitrogen, permanganate index, and reservoir storage) were extracted using the method of feature selection with the GA, which simplified the model structure, making it more practical and efficient for environmental management. The results showed that the developed simplified GA-SVM model could solve nonlinear problems of complex system, and was suitable for the simulation and prediction of chlorophyll a with better performance in accuracy and efficiency in the Miyun Reservoir. OPEN ACCESS
منابع مشابه
Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملIntelligent application for Heart disease detection using Hybrid Optimization algorithm
Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...
متن کاملQSAR Study of 17β-HSD3 Inhibitors by Genetic Algorithm-Support Vector Machine as a Target Receptor for the Treatment of Prostate Cancer
The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitorscan be used to efficiently target it. In the present study, the multiple linear regression (MLR),and support vector machine (SVM) methods were used to interpret the chemical structuralfunctionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structuralinformation were described thro...
متن کامل